A Numerical Investigation of Stresses, Printing
Efficiency, Printability, and Cell Viability in Nozzle

Printheads for 3D Extrusion Bioprinting
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1. Introduction

* 3D extrusion bioprinting

= Manufacturing tissues and organs.
* Printing with bioink

= Extruding inks that contain living cells.
* Shear-thinning behavior

= Viscosity decreases under shear rate.
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Benefit |
" Affordable and scalable
Ease of operation
Deposit high cell densities

Drawback
Limited printing resolution /speed
High stresses inside the needle
Low cell viability (40-80%)" CAD

Figure 1. Assessment Criteria of 3D
extrusion bioprinting. [1]
*CAD: computer-aided design.

Table 1. Benefits and drawbacks
of 3D extrusion bioprinting.

2. Challenges

« Difficult to observe shear stress/cell viability experimentally.

* Testing thousands of different bioinks is repetitive and tedious.

* The need to optimize needle geometry, cell viability, printing
efficiency, and printability.

5. Part II: Printed Bioink Strand

¢ Solid line: non-Newtonian shear-
thinning behavior.

* Dashed line: yield stress observed
outside the needle.

* Yield stress needs to be considered
for the printed strand.

Viscosity

3. Objectives

* Performing numerical simulation to
assess stresses, efficiency/printability,
and cell viability.

* Investigating needle geometries and
bioink's rheological properties to
increase cell viability.

Figure 2. Numerical simulation
carried out by OpenFOAM.
Shear stress distribution (kPa).

4. Part |I: Bioink Inside the Needle
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- * Investigating 3 types of needles.
syringe * Bioink acts as power-law fluid.
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* Validating simulation results with
analytical models.

* Visualizing shear stress distribution
and cell viability zones.
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Figure 5. Comparative visualization of cell ) i X
viability in three different needle types: 90° Figure 4. The relationship between shear rate
Cylindrical, 45° Cylindrical, and Tapered. The and apparent viscosity (cylindrical needle). The

viability zones [2] illustrate the impact of simulation indicates that the apparent viscosity
needle design on cell stress and potential for doesn't diverge due to the non-divergence of

bioprinting applications. the shear rate at the center of the needle.
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Figure 6. Shear stress dependencies on temperature for 90° Cylindrical, 45° Cylindrical,
and Tapered needles. Temperature variations distinctly alter stress distributions, with
the most significant impact observed under the 2.5% (w/v) condition.
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» « Bioink acts as Herschel-Bulkley fluid.
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Figure 7. Visualization of rheological
behavior driven by the disentanglement
and elongation of polymer chains. [3]
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Figure 8. Classification of fluids with shear
stress as a function of shear rate. [4]
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* Comparison between analytical
models and simulation results.

* The Herschel-Bulkley fluid
model provides an adequate
estimate (81.1%) on the printed
strand diameter.
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Figure 9. Simulation setup for the
assessment of printability.
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Figure 10. Assessment of shear stress (kPa) ke
moving spes

experienced by the printed strand at 25°C.

6. Conclusion

* The 90° cylindrical needle provides a smaller maximum wall
stress area, but a higher extensional stress region at the needle
inlet region over its 45° counterpart.

¢ The tapered nozzle exhibits the least stress in terms of both
magnitude and area.

* Visualizations of shear stress distribution, efficiency/printability,
and cell viability zones are established.

7. Future Work

» Utilizing supervised learning regression to estimate cell viability
zones; comparing them with experiments.
* Acquiring experimental data to train machine learning models.
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