A Numerical Investigation of Stresses, Printing Efficiency, Printability, and Cell Viability in Nozzle **Printheads for 3D Extrusion Bioprinting**

3D押し出しバイオプリンティングに関する流体せん断応力、印刷効率、 印刷適性、細胞生存率に関する数値解析

1. Introduction

- 3D extrusion bioprinting
- Manufacturing tissues and organs. Printing with bioink
- Extruding inks that contain living cells.
- Shear-thinning behavior
 - Viscosity decreases under shear rate.

Benefit Drawback Affordable and scalable Limited printing resolution/speed Ease of operation High stresses inside the needle Deposit high cell densities Low cell viability (40-80%)1

> Table 1. Benefits and drawbacks of 3D extrusion bioprinting.

Figure 1. Assessment Criteria of 3D extrusion bioprinting. [1] *CAD: computer-aided design.

3. Objectives

- · Performing numerical simulation to assess stresses, efficiency/printability, and cell viability.
- Investigating needle geometries and bioink's rheological properties to increase cell viability.

Shear stress distribution (kPa)

Bioengineering Colloquium 2023

Division of Chemical Engineering Graduate School of Engineering Science Osaka University

Okano Lab.

Colin ZHANG zhang.colin@cheng.es.osaka-u.ac.jp

2. Challenges

- Difficult to observe shear stress/cell viability experimentally.
- Testing thousands of different bioinks is repetitive and tedious.
- The need to optimize needle geometry, cell viability, printing efficiency, and printability.

5. Part II: Printed Bioink Strand

Needle Outlet

- Solid line: non-Newtonian shearthinning behavior.
- Dashed line: yield stress observed outside the needle.
 - Yield stress needs to be considered for the printed strand.
- Bioink acts as Herschel-Bulkley fluid.

Moving Wall Velocity, Vm

Strand Diameter.

1 atm

Figure 9. Simulation setup for the assessment of printability.

Flow Rate, Q

Figure 10. Assessment of shear stress (kPa) experienced by the printed strand at 25°C.

6. Conclusion

- The 90° cylindrical needle provides a smaller maximum wall stress area, but a higher extensional stress region at the needle inlet region over its 45° counterpart.
- The tapered nozzle exhibits the least stress in terms of both magnitude and area.
- Visualizations of shear stress distribution, efficiency/printability, and cell viability zones are established.

7. Future Work

- Utilizing supervised learning regression to estimate cell viability zones; comparing them with experiments.
- Acquiring experimental data to train machine learning models.

8. References

0.6

- [1] Y. S. Zhang et al., Nature Reviews Methods Primers, 1(1), pp. 1–20, 2021
- [2] Lemari e et al., Bioprinting, 21(2021), e00119, 2021
- [3] Cooke and Rosenzweig, APL Bioengineering, 5(1), p. 011502, 2021
- [4] Schwab et al., Chemical Reviews, 120(19), pp. 11028–11055, 2020

 $+ K \dot{\gamma}^n$ Herschel-Bulkley Atonian

Figure 8. Classification of fluids with shear stress as a function of shear rate. [4]

- Comparison between analytical models and simulation results.
- The Herschel–Bulkley fluid model provides an adequate estimate (81.1%) on the printed strand diameter.

